

Welcome to repomate-plug’s documentation!

Contents:

	Plugin system overview
	Conventions

	Hooks

	Implementing hooks and writing internal plugins
	Hook functions in a plugin class

	Standalone hook functions

	Writing external plugins (recommended and easy!)

	repomate_plug Module Reference
	API

	pluginmeta

	corehooks

	exthooks

	exception

Indices and tables

	Index

	Module Index

	Search Page

Plugin system overview

Conventions

For repomate to discover a plugin and its hooks, the following conventions
need to be adhered to:

	The PyPi package should be named repomate-<plugin>, where <plugin>
is the name of the plugin.

	The actual Python package (i.e. the directory in which the source files
are located) should be called repomate_<plugin>. In other words,
replace the hyphen in the PyPi package name with an underscore.

	The Python module that defines the plugin’s hooks/hook classes should be
name <plugin>.py.

For an example plugin that follows these conventions, have a look at
repomate-junit4 [https://github.com/slarse/repomate-junit4]. Granted that the plugin follows these conventions and is
installed, it can be loaded like any other repomate plugin (see Using
Existing Plugins [https://repomate.readthedocs.io/en/latest/plugins.html#using-existing-plugins]).

Hooks

There are two types of hooks in repomate: core hooks and extension
hooks.

Core hooks

Core hooks provide core functionality for repomate, and always have a
default implementation in repomate.ext.defaults. Providing a
different plugin implementation will override this behavior, thereby
changing some core part of repomate. In general, only one implementation
of a core hook will run per invocation of repomate. All core hooks are
defined in repomate_plug.corehooks.

Extension hooks

Extension hooks extend the functionality of repomate in various ways.
Unlike the core hooks, there are no default implementations of the extension
hooks, and multiple implementations can be run on each invocation of
repomate. All extension hooks are defined in
repomate_plug.exthooks. repomate-junit4 [https://github.com/slarse/repomate-junit4] consists solely of extension hooks,
and so do all of the repomate built-ins [https://repomate.readthedocs.io/en/latest/plugins.html#built-in-plugins] except for repomate.ext.defaults.

Implementing hooks and writing internal plugins

Implementing a hook is fairly simple, and works the same way regardless of what
type of hook it is (core or extension). If you are working with your own fork
of repomate, all you have to do is write a small module implementing some hooks,
and drop it into the repomate.ext sub-package (i.e. the in directory
repomate/ext in the repomate repo).

There are two ways to implement hooks: as standalone functions or wrapped in a
class. In the following two sections, we’ll implement the
act_on_cloned_repo() extension hook
using both techniques. Let’s call the plugin exampleplug and make sure it
adheres to the plugin conventions.

Hook functions in a plugin class

Wrapping hook implementations in a class inheriting from
Plugin is the recommended way to write
plugins for repomate. The class does some checks to make sure that all
public functions have hook function names, which comes in handy if you are
in the habit of misspelling stuff (aren’t we all?). Doing it this way,
exampleplug.py would look like this:

exampleplug.py

import pathlib
import os
from typing import Union

import repomate_plug as plug

PLUGIN_NAME = 'exampleplug'

class ExamplePlugin(plug.Plugin):
 """Example plugin that implements the act_on_cloned_repo hook."""

 def act_on_cloned_repo(self,
 path: Union[str, pathlib.Path]) -> plug.HookResult:
 """Do something with a cloned repo.

 Args:
 path: Path to the student repo.
 Returns:
 a plug.HookResult specifying the outcome.
 """
 return plug.HookResult(
 hook=PLUGIN_NAME, status=plug.Status.WARNING, msg="This isn't quite done")

Dropping exampleplug.py into the repomate.ext package and running
repomate -p exampleplug clone [ADDITIONAL ARGS] should give some
not-so-interesting output from the plugin.

The name of the class really doesn’t matter, it just needs to inherit from
Plugin. The name of the module and hook
functions matter, though. The name of the module must be the plugin name, and
the hook functions must have the precise names of the hooks they implement. In
fact, all public methods in a class deriving from
Plugin must have names of hook functions,
or the class will fail to be created. You can see that the hook returns a
HookResult. This is used for reporting the
results in repomate, and is entirely optional (not all hooks support it,
though). Do note that if None is returned instead, repomate will not
report anything for the hook. It is recommended that hooks that can return
HookResult do. For a comprehensive example of an internal plugin
implemented with a class, see the built-in javac plugin [https://github.com/slarse/repomate/blob/master/repomate/ext/javac.py].

Standalone hook functions

Using standalone hook functions is recommended only if you don’t want the
safety net provided by the Plugin
metaclass. It is fairly straightforward: simply mark a function with the
repomate_plug.repomate_hook decorator. With this approach,
exampleplug.py would look like this:

exampleplug.py

import pathlib
import os
from typing import Union

import repomate_plug as plug

PLUGIN_NAME = 'exampleplug'

@plug.repomate_hook
def act_on_cloned_repo(path: Union[str, pathlib.Path]) -> plug.HookResult:
 """Do something with a cloned repo.

 Args:
 path: Path to the student repo.
 Returns:
 a plug.HookResult specifying the outcome.
 """
 return plug.HookResult(
 hook=PLUGIN_NAME, status=plug.Status.WARNING, msg="This isn't quite done")

Again, dropping exampleplug.py into the repomate.ext package and running
repomate -p exampleplug clone [ADDITIONAL ARGS] should give some
not-so-interesting output from the plugin. For a more practical example of a
plugin implemented using only a hook function, see the built-in pylint
plugin [https://github.com/slarse/repomate/blob/master/repomate/ext/pylint.py].

Writing external plugins (recommended and easy!)

Writing an external plugin is really easy using the
repomate-plugin-cookiecutter [https://github.com/slarse/repomate-plugin-cookiecutter] template. First of all, you need to install
cookiecutter [https://github.com/audreyr/cookiecutter-pypackage]. It’s on PyPi and installs just the same as repomate with
pip install cookiecutter (with whatever flags you like to use). Now,
running python3 -m cookiecutter gh:slarse/repomate-plugin-cookiecutter
will give you some prompts to answer. If you want to create a plugin called
exampleplug, it looks something like this:

$ python3 -m cookiecutter gh:slarse/repomate-plugin-cookiecutter
author []: Your Name
email []: email@address.com
github_username []: your_github_username
plugin_name []: exampleplug
short_description []: An example plugin!

This will result in a directory called repomate-exampleplug, containing a
fully functioning (albeit quite useless) external plugin. If you do cd
exampleplug and then run pip install -e ., you will install the plugin
locally. You can then use it like any of the built-in plugins, as described in
Using Existing Plugins [https://repomate.readthedocs.io/en/latest/plugins.html#using-existing-plugins]. To actually implement the behavior that you want,
edit the file repomate-exampleplug/repomate_exampleplug/exampleplug.py to
implement the hooks you want.

repomate_plug Module Reference

API

	
class repomate_plug.Plugin

	Base class for plugin classes. For plugin classes to be picked up by
repomate, they must inherit from this class.

Public methods must be hook methods, i.e. implement the specification of
one of the hooks defined in PeerReviewHook
or CloneHook. If there are any other
public methods, an error is raised on class creation. As long as the method
has the correct name, it will be recognized as a hook method.

The signature of the method is not checked until the hook is registered by
the repomate_plug.manager (an instance of
pluggy.manager.PluginManager). Therefore, when testing a plugin,
it is a good idea to include a test where it is registered with the manager
to ensure that it has the correct signatures.

Private methods (i.e. methods prefixed with _) carry no such
restrictions.

	
class repomate_plug.HookResult(hook, status, msg)

	
	
hook

	Alias for field number 0

	
msg

	Alias for field number 2

	
status

	Alias for field number 1

	
class repomate_plug.Status

	Status codes enum.

pluginmeta

	
class repomate_plug.pluginmeta.Plugin

	Base class for plugin classes. For plugin classes to be picked up by
repomate, they must inherit from this class.

Public methods must be hook methods, i.e. implement the specification of
one of the hooks defined in PeerReviewHook
or CloneHook. If there are any other
public methods, an error is raised on class creation. As long as the method
has the correct name, it will be recognized as a hook method.

The signature of the method is not checked until the hook is registered by
the repomate_plug.manager (an instance of
pluggy.manager.PluginManager). Therefore, when testing a plugin,
it is a good idea to include a test where it is registered with the manager
to ensure that it has the correct signatures.

Private methods (i.e. methods prefixed with _) carry no such
restrictions.

corehooks

Hookspecs for repomate core hooks.

Core hooks provide the basic functionality of repomate. These hooks all have
default implementations, but are overridden by any other implementation. All
hooks in this module should have the firstresult=True option to the hookspec
to allow for this dynamic override.

	
class repomate_plug.corehooks.PeerReviewHook

	Hook functions related to allocating peer reviews.

	
generate_review_allocations(master_repo_name, students, num_reviews, review_team_name_function)

	Generate a (peer_review_team -> reviewers) mapping for each student
repository (i.e. <student>-<master_repo_name>), where len(reviewers) =
num_reviews.

review_team_name_function should be used to generate review team names.
It should be called like:

review_team_name_function(master_repo_name, student)

Important

There must be strictly more students than reviewers per repo
(num_reviews). Otherwise, allocation is impossible.

	Parameters

	
	master_repo_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a master repository.

	students (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Students for which to generate peer review allocations.

	num_reviews (int [https://docs.python.org/3/library/functions.html#int]) – Amount of reviews each student should perform (and
consequently amount of reviewers per repo)

	review_team_name_function (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]) – A function that takes a master repo name
as its first argument, and a student username as its second, and
returns a review team name.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Returns

	a (peer_review_team -> reviewers) mapping for each student repository.

exthooks

Hookspecs for repomate extension hooks.

Extension hooks add something to the functionality of repomate, but are not
necessary for its operation. Currently, all extension hooks are related to
cloning repos.

	
class repomate_plug.exthooks.CloneHook

	Hook functions related to cloning repos.

	
act_on_cloned_repo(path, api)

	Do something with a cloned repo.

	Parameters

	
	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – Path to the repo.

	api – An instance of repomate.github_api.GitHubAPI.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][HookResult]

	Returns

	optionally returns a HookResult namedtuple for reporting the
outcome of the hook. May also return None, in which case no
reporting will be performed for the hook.

	
clone_parser_hook(clone_parser)

	Do something with the clone repos subparser before it is used used to
parse CLI options. The typical task is to add options to it.

	Parameters

	clone_parser (ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – The clone subparser.

	Return type

	None

	
config_hook(config_parser)

	Hook into the config file parsing.

	Parameters

	config – the config parser after config has been read.

	Return type

	None

	
parse_args(args)

	Get the raw args from the parser. Only called for the clone parser.
The typical task is to fetch any values from options added in
clone_parser_hook().

	Parameters

	args (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – The full namespace returned by
argparse.ArgumentParser.parse_args()

	Return type

	None

exception

Exceptions for repomate_plug.

	
exception repomate_plug.exception.HookNameError

	Raise when a public method in a class that inherits from
Plugin does not have a hook name.

	
exception repomate_plug.exception.PlugError

	Base class for all repomate_plug exceptions.

 Python Module Index

 c |
 e |
 r

 		 	

 		
 c	

 	
 	
 corehooks	
 Hookspecs for repomate core hooks.

 		 	

 		
 e	

 	
 	
 exception	
 Exceptions for repomate_plug.

 	
 	
 exthooks	
 Hookspecs for repomate extension hooks.

 		 	

 		
 r	

 	[image: -]
 	
 repomate_plug	

 	
 	
 repomate_plug.corehooks	

 	
 	
 repomate_plug.exception	

 	
 	
 repomate_plug.exthooks	

 	
 	
 repomate_plug.pluginmeta	

Index

 A
 | C
 | E
 | G
 | H
 | M
 | P
 | R
 | S

A

 	
 	act_on_cloned_repo() (repomate_plug.exthooks.CloneHook method)

C

 	
 	clone_parser_hook() (repomate_plug.exthooks.CloneHook method)

 	CloneHook (class in repomate_plug.exthooks)

 	
 	config_hook() (repomate_plug.exthooks.CloneHook method)

 	corehooks (module)

E

 	
 	exception (module)

 	
 	exthooks (module)

G

 	
 	generate_review_allocations() (repomate_plug.corehooks.PeerReviewHook method)

H

 	
 	hook (repomate_plug.HookResult attribute)

 	
 	HookNameError

 	HookResult (class in repomate_plug)

M

 	
 	msg (repomate_plug.HookResult attribute)

P

 	
 	parse_args() (repomate_plug.exthooks.CloneHook method)

 	PeerReviewHook (class in repomate_plug.corehooks)

 	
 	PlugError

 	Plugin (class in repomate_plug)

 	(class in repomate_plug.pluginmeta)

R

 	
 	repomate_plug (module)

 	repomate_plug.corehooks (module)

 	
 	repomate_plug.exception (module)

 	repomate_plug.exthooks (module)

 	repomate_plug.pluginmeta (module)

S

 	
 	Status (class in repomate_plug)

 	
 	status (repomate_plug.HookResult attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to repomate-plug’s documentation!

 		
 Plugin system overview

 		
 Conventions

 		
 Hooks

 		
 Core hooks

 		
 Extension hooks

 		
 Implementing hooks and writing internal plugins

 		
 Hook functions in a plugin class

 		
 Standalone hook functions

 		
 Writing external plugins (recommended and easy!)

 		
 repomate_plug Module Reference

 		
 API

 		
 pluginmeta

 		
 corehooks

 		
 exthooks

 		
 exception

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

